IN-SPACE ホール25年度成果

Robust Anode-layer Intelligent thruster for Japan IN-space propulsion

高放電電圧版ホールスラスタの評価 【大工大】 MSのアノードレイヤ型への適用 【東大】 TALの安定化へのアプローチ 【首都大学東京】 大電カホールスラスタの開発 【九大】 全電化衛星モデルならびに軌道移行モデルの作成とミッション 具体例の評価 【都立高専】 クラスタ作動基礎データ取得と干渉領域解析 【岐阜大】 スマート電源のために必須のデータ収集系の開発 【宮崎大】

TAL型ホールスラスタによる 高電圧試験について

高放電電圧版ホールスラスタの評価(TALT-2)

担当:大阪工大

キセノン, アルゴン, クリプトン推進剤ガスを用いて, 放電電圧200-1000V(投入電力1-5kW)の作動域の性能特性を取得する. (キセノンでは比推力2000s程度から高比推力3000sの作動域に相当)

<u>到達目標</u>

キセノンを用いて,比推力3000sにて,推進効率60%以上(キセノンを用いて、比 推力域2000-3000sにて,推進効率55%以上,かつ安定作動の確立)

性能特性の向上、安定作動の確立を目指す

試験条件と結果

Discharge Voltage	/oltage 300~550V			3.5	· · · ·	Mag	flow roto : 2		
Propellant	Xenon			₹_3_		Anode position : -4.0mm			
Mana Flaw Data	TALT-2	3.0mg/s		urrent	0	9 = = = = 1			
Mass Flow Rate	Hollow Cathode	0.1mg/s		2.5 -	-			Trim-coil	Trim-coil
Coil Current	Coil Current 0.8, 0.8, 2.0A (inner, outer, trim)		Disch						
Cathode Distance	133mm			1.5	_		with a min-co	11	
Backpressure	1.0×10 ⁻² Pa			1.5	200	250 300 Discharge vol	350 tage V	400	450
70				06		放電電圧—	·放電電波	荒	
: norma	l anode without a Trim-coil l anode with a Trim-coil d anode without a Trim-coil	-2	2200		Anode position : -	.0mg/s 4.0mm	0	8	
	d with a Trim-coil		sucy ^{se} 0005	0.5 -		0	· · · · · · · · · · · · · · · · · · ·		
1 rast 50 -			impul efficie	-	0		0		
40 - G	Mass flow r. Anode posit With magne	ate : 3.0mg/s ion : -4.0mm tic shield	1600 ji tsinit 1400 dS 1200	0.4 -		: norma : norma : evolve : evolve	l anode without l anode with T anode without d with Trim-c	ut Trim-coi `rim-coil out Trim-cc oil	il >il
30 + 150 + 200 +	250 300 350	400 450		0.3 + 150	200 2	250 300	350	400	450
	Discharge voltage, V					Discharge vol	ltage, V		
放電電圧—比推力				放電電圧-推進効率					

■ 印加電圧400V程度までは比較的安定した作動が見られた.

■ 400V以上の電圧域では作動が不安定となり,現在も安定作動条件を模索中

300Vの時

950Vの時(下流部より)

■950Vの時,作動後すぐにホローアノード先端 部が赤熱する傾向があった.

950Vの時

高放電電圧版ホールスラスタの評価(THT-VI)

■ SPTタイプのホールスラスタに対しても同様の高電圧作動試験を行った.

試験条件と結果

■印加電圧を上昇に伴い,安定作動させるため推進剤・カソード流量を増加させる必要があった.
900V以上の印加電圧の場合,直後は比較的安定しているものの,時間の経過とともに作動が不安定となった.

300Vの時

■印加電圧1000V時の試験により, 内部の配線が焼損するなど,更なる 熱対策の必要であることが判明した.

■本試験により,解決すべき問題はあるものの,印加電圧1000Vでの作動を確認した.

1000Vの時

MSのアノードレイヤ型への適用

UT-58 アノードレイヤースラスタの開発目的

- UT-58の推進性能と放電安定性
 - UT-38からの出力アップが目標
 - 効率&放電振動マップの作成
 - アルゴン推進剤時の性能評価とアルゴン用 最適チャンネル径の推定

UT-58外観

- TALへのMagnetic Shielding (MS)検証
 - チャネル壁面と磁力線を並行に配置してイ オンスパッタを低減し、それに起因する寿 命制限を取り除くことが目標
 - ガードリングイオン電流と壁面近傍電界分 布の測定より評価

放電チャネル周り磁場形状

UT-58性能測定

Xeでの推進効率マップ

Arでの推進効率マップ

Xe推進剤で世界最高水準のアノード効率73%@(1800秒, 1kW)を達成
 Ar推進剤ではアノード効率23%@(1800秒, 2kW)であるが、低磁束密度側
 に高効率な作動点が存在
 Arでの効率改善には、Xeの設計と比較してよりコンパクトにすべき

SPT における Magnetic Shielding

TALにおけるMagnetic Shielding (MS)効果 💏 東京大学

ガードリングイオン電流

・放電チャネル内二次元電位分布

Fields at edge are important

半径方向の電位勾配小 壁面へ加速されるイオンが減少

Measured plasma potential contours

TALにおいてもMSは壁面損耗低減へ効果的であるがまだ不十分

TALの安定化へのアプローチ

TAL型ホールスラスタ@ 首都大学東京

RF/Cが適用可能であることを確認

- TMU-066 の製作
- RF/C Inner Coil を用いた点火に成功

60 mNでの作動

TAL型ホールスラスタ : RF/Cとの組合せ実験@首都大学東京

・ 点火状態のRF/CとTMU-066(Xe流入、磁場/電場未印加)での発光現象
 →RF/CとTALとの容量性カップリング現象の存在
 →RF/C による放電振動低減の可能性を確認

RF/Cを作動, TMU-066にガスのみ投入

RF/C Inner Coil でのHigh Current Mode の存在を確認

→現在、50Aまで(電源の制限のため)@首都大学東京

大電力ホールスラスタの開発

<u>大電力ホールスラスタの開発</u>

Development of 5 kW/15 kW dual mode Hall thruster

Power	Thrust	l _{sp}	Mass flow rate	efficiency	Vd	Id
5 kW	300 mN	1900 s	17 mg/s	0.60	300 V	17 A
14 kW	500 mN	3000 s	17 mg/s	0.55	800 V	17 A
3 kW	250 mN	1300 s	20 mg/s	0.58	150 V	21 A

<u>大電力ホールスラスタの開発</u>

Magnetic Shieldingの適用

・コイルの増強

Normal

大電力ホールスラスタの開発

大電力ホールスラスタの開発

ISAS/JAXAでの試験

- ・4月から6月に実施予定
- 推力、温度を計測予定

全電化衛星モデルならびに軌道移行 モデルの作成とミッション具体例の評価

全電化衛星モデルならびに軌道移行モデルの作成とミッション具体例の評価

平均化と非線形計画法を用いた手法により、螺旋状の軌道移行を最適化可能とした 蝕、J2項、放射線劣化を導入

全電化衛星モデルは軌道移行結果からただちに構築可能

ミッション具体例の評価:"新型ホールスラスタによる全電化静止衛星バスの開発戦略"のp.5軌道移行部分を詳細に解析

		LEO	GTO1	Super synchronous	GTO2	
IF軌道						
		a=6628 km, e=0, i=30.4°	a=24503 km, e=0.7295, i=28.5°	a=42003 km, e=0.8422, i=28.0°	a=25728 km, e=0.6472, i=20.3°	
	H2A202能力	10 ton	4.0 ton	3.2 ton	2.9 ton	
で - 遷移期間		数日				
	GEO質量	2.3 ton	2.1 ton (ΔV=1.8 km/s)	1.9 ton (ΔV=1.6 km/s)	1.7 ton (ΔV=1.5 km/s)	
EP 1	遷移期間(劣化無) 遷移期間(劣化有)	1060 days 到達不可能	195 days 218 days (87%)	129 days 140 days (91.4%)	116 days 128 days (90.0%)	
2000s	GEO質量	7.22 ton (ΔV=6.05 km/s)	3.42 ton (Δ <i>V</i> =2.88 km/s)	2.81 ton (Δ <i>V</i> =2.38 km/s)	2.55 ton (Δ <i>V</i> =2.33 km/s)	
EP 2 3000s	遷移期間(劣化無) 遷移期間(劣化有)	1545 days 到達不可能	271 days 318 days (84%)	179 days 196 days (90.6%)	161 days 187 days (87.6%)	
	GEO質量	8.14 ton	3.62 ton	2.95 ton	2.68 ton	
	コメント	放射線劣化によりGEO投入 不可能	IF軌道における投入質量を周	反映したGEO 投入質量となる。	飛行時間とのトレードオフ	

クラスタ作動基礎データ取得と干渉領域 解析

「クラスタ作動基礎データ取得と干渉領域解析」報告

ファラデーカップを用いたプルーム干渉測定及び磁場解析による検討 GFU UNVERSITY

振子式スラストスタンドによる推力測定

GIFU UNIVERSITY

総括

- ・プルームのヘッド近傍までの干渉効果がみられ,作動不安定,放電電流増加につながった.
- ・干渉領域側のプルーム発散は、2基のヘッドの磁場を同方向に印加する場合に単体作動時よりも増加し 磁場を逆方向に印加した場合には減少した。
- ・磁場の印加向きの組み合わせの違いにより、プルーム発散傾向と一致する同様な推力増減がみられた.

今後の予定

- ・GAK1磁場逆印加時の推力データ測定.
- ・SBS作動時のB-I特性の習得.
- ・3基構成等の場合の2次元磁場干渉効果の評価

スマート電源のために必須の データ収集系の開発

スマート電源の開発

- 推力をIn-situ, real timeに計測する方式
 - インテリジェント性の向上のため
 - 推力測定値をフィードバックして,所要の推力を生成する.
 - 経年劣化の計測
 - スロットリングの向上

スマート電源の開発

- 平成25年度着手
 - 推力変動を評価可能な推力測定装置の試作
 - 零位法と加速度計測の併用
 - 推力測定装置本体の試作
 - 零位法用のボイスコイルモータVCM

計測

- VCM用駆動回路
- ソフトウエアの開発
 - VCM駆動電流
 - 加速度

- ・高放電電圧作動(high lsp)化 アノード位置の最適化、廃熱の再検討
- MSの
 MSの
 Bigger (1)
 MSの
 Bigger (2)
 Bigger (2)</
- ・インテリジェンス電源の開発 推力をモニタしての制御等
- ・ RF/Cの大電力化

大電流化、効率の向上、安定性への評価

・ミッション解析